Cleaning, Adhesion, & Productivity

Barbara Kanegsberg and Ed Kanegsberg
BFK Solutions LLC
(310) 459-3614
info@bfksolutions.com
SCCAVS Dinner Meeting
September 26, 2018
Torrance, CA

BFK Solutions Critical Cleaning Consultants, est. 1994

- As the industry leaders, we provide
 - Process improvement, not product sales
 - Experience, expertise, common sense
 - Industry involvement: JS3 (military), IPC, ASTM, U.S. ISO expert, EPA, FDA
- Barbara Kanegsberg, "The Cleaning Lady"
 - Biochemist, clinical chemist, manufacturing process
- Ed Kanegsberg, "The Rocket Scientist"
 - Physicist, engineer, process evaluation

BFK Solutions Educational Resources

- "Clean Source" eNewsletter
 - Free; Sign up!
- Technical column, Products Finishing Magazine
- Product Quality Cleaning Workshops (PQCW)
 - With Dr. Darren Williams, Sam Houston State University
- Editors, 2 volume, "Handbook for Critical Cleaning," CRC Press, 2nd edition, 2011

Anselm Kuhn, Publisher

"the Bible of cleaning within industrial processes" Kate Hand, Sr. Managing Editor

2 APPLICATIONS, PROCESSES, AND CONTROLS Edited by Barbara Kancgsberg Edward Kanegsberg @CRC Press

Second Edition

Handbook for

"the most up-to-date and informed textbook of its type" Jim Millar, Sales & Marketing Manager "finishing experts and rookies alike will thoroughly enjoy these volumes" Dan Blodin, Product Manager

"I want to become a 'cleaning lady.' I refer to your handbook almost daily." Nicholas, Engineer

IN PRINT OR ON YOUR TABLET

THROUGH CRCPRESS.COM AND MAJOR ONLINE BOOKSELLERS

Always question authority - including BFK Solutions

- We make the best effort to provide accurate, up-to-date information
- Information, especially quantitative information, is obtained from reliable references
- It's always prudent to reconfirm all technical and regulatory information from the appropriate supplier or regulatory agency
 - SDS (MSDS)
 - Technical data sheet
 - Most recent requirement or regulation
- This presentation contains private and copyrighted material. May be distributed with prior permission of BFK Solutions, LLC

Overview: Cleaning, Adhesion, and Productivity

- Why clean before coating
- How cleaning works
- Cleaning, extraction, separation, detection
- Strategic cleaning

Why clean?

Cleaning is essential

- Electronics assemblies
- Aerospace hardware
- Military weapons
- Implantable medical devices
- Paintings, sculpture
- Computer hardware
- Analytical instruments
- Mixing chambers, product contact

Cleaning is essential

- Optics
- Automotive parts
- Reflectors prior to vapor deposition
- Coffin corners
- Molded plastic parts
- Miniature components
- Nano-components
- Parts made with 3D printing (additive manufacturing)

Begin with the end in mind

- Why are you cleaning?
- What soils are you removing?
- What are the next steps in the process?
- What risks are involved in removing the soil?
- What risks are associated with the residue?

Product Cleaning

- Soil
 - Matter out of place
 - E.g: burnt on lasagna on a casserole
- Cleaning
 - Removing matter out of place
 - Removing live dirt, dead dirt, any matter out of place
 - Not sterilization
 - Green cleaning separate issue, cleaning ought to be green
- Most manufactured products have to be cleaned to work

Precision Cleaning

- Precision cleaning
 - Cleaning items that already looks pretty clean
 - Cleaning with a well-defined process
 - Cleaning to a specified process or specified level of residue

Critical cleaning

- Value-added, "tipping point" cleaning
- Cleaning with an EFFECTIVE, WELL-DEFINED process
- If you don't do it, product quality suffers
- Any cleaning step is potentially critical cleaning
 - Could be at the beginning of fabrication

Is it soil?

...or is it dirt?

Soils

Particles (metal fines, chips, skin flakes, polishing grit, 3D powder)

Acids

Water

Solvent

Product Assortment

Residual product/breakdown (in processing equipment)

Deposited cleaning agent residue (including flux residue)

Oils, greases

Lapping, polishing compounds compounds

Metal working fluids

Solder flux (rosin, organic acid, low residue)

Rust-preventative

Nomadic dirt

- Dirt can creep from holes and crevices
- Dirt can
 - Migrate from process equipment
 - Mosey over to process equipment
- A clean surface won't remain clean if there are non-clean surfaces nearby

What happens to coatings if there is inadequate cleaning?

- Poor coating adhesion
- Change in coating chemistry
 - Poor cohesion
 - Changes in appearance (texture, color)
- Contaminants visible under the coating
- Sort of like painting a wall over grease and dirt

Photo courtesy of Optiforms

Negative impacts of cleaning or coating failure

- Poor product quality
- Delay in market approval
- Costs from delayed shipment
- Hazards for public
- Risks for patients
- Regulatory action
- Legal action

Overview: Cleaning, Adhesion, and Productivity

- Why clean before coating
- How cleaning works
- Cleaning, extraction, separation, detection
- Strategic cleaning

Cleaning is a 'TACTful' Process

- (T) Temperature
 - 10 degree Centigrade increase in temperature doubles reaction rate
 - Rule of thumb
- (A) Action or Force
- (C) Cleaning chemistry
- (T) Time
- Wash, rinse, dry
- Must consider worker safety, chemical emissions

RUBES By Leigh Rubin

CRUCIAL:
THOROUGH RINSING

ADEQUATE, EFFICIENT DRYING

1

BATCH

CLEANING

Steps & Functions of Cleaning System:

Think About Cleaning Agent and Cleaning Process Together

- (1) Wash
 - Deliver cleaning agent to surface
 - Provide cleaning action to remove soil without damage to surface
 - Remove soils from proximity of surface (i.e. leave a clean surface)
- (2) Rinse
 - Remove residual cleaning agent
 - Continue cleaning process
 - Vapor degreasing solvent self-rinse
- (3) Dry
 - Remove water, adsorbed solvent
- Separate, distinguishable operations
 - Allocate \$\$\$ and design time appropriately
- Restore cleaning agent for subsequent operation (Optional, but often desirable)
- All steps: avoid product damage

"I shall endeavour not to bore you. Facts are so much more interesting than theories, don't you agree?"

The sage words of:

Dr. No

Ian Fleming, James Bond Series

The physics of cleaning

- Soils adhere to surfaces via forces
- Cleaning involves overcoming those forces

Forces

- Polar forces
 - Inter-molecular forces arising from a permanent charge distribution
 - One side of molecule is more positive, other side is negative
 - Polar molecules (dipoles) attract other polar molecules
 - Example: liquid water
- Hydrogen bonding forces
 - Polar force associated with the hydrogen atom (single proton)
- Non-polar (dispersion, Van der Waals, London) forces
 - Weaker inter-molecular forces arising from transient charge distribution---Molecule becomes polar, but not permanently
 - While polar, induces polarity in nearby molecules, causing attractive forces
 - Example: liquid oil, wax

Dispersion forces

Symmetric molecule induces dipole

http://itl.chem.ufl.edu/2045/lectures/lec_g.html

Dispersion forces in nature

Foot of a Tokay Gecko Photo: David Clements, From Wikipedia

Gecko feet

- Geckos can adhere to a "smooth" dry surface
 - No sticky fluids exuded
 - Thousands/millions of tiny hairs (cilia); each hair has a tiny spatula foot
 - Foot provides surface area (many molecules) for dispersive attraction
 - Microscopic dimension allows foot to fit into small surface irregularities
- Small particles are like gecko feet
- Dried soils are like gecko feet

Why worry if soil sticks?

- Adherent soil can impact coating adhesion
- Contaminated product can contaminate the cleanroom or vacuum chamber
- Adherent soil can impact product performance

What makes soil difficult to remove?

- Manufacturing processes can impede cleaning
 - Soil
 - Force
 - Heat
 - Time
- Product shape and material
- Changes in regulations
 - Environmental, safety

A balancing act

What helps remove soil?

- Forces
- Cleaning chemistry
- Temperature
- Time

What makes soil stick?

- Forces
- Soil chemistry and size
- Temperature
- Time
- Product shape and material
- Changes in regulations
 - Limits available options

Parts have to be pretty clean before plasma cleaning or vapor deposition

- Plasma: chemically reactive
 - Have to be well-defined
- Any vacuum plasma process can include
 - Cleaning
 - Surface modification
 - Residue modification
- Excess soils can
 - Mess up the surface
 - Mess up the coating

Circa 1990 bulletin for Litton Industries, created by Barb K. Solutions LLC

Key cleaning parameters

- Solvency
 - Match cleaning agent to soil (like dissolves like)
- Wettability, Penetration

Hansen Solubility Parameters

- Mathematical embodiment of "like dissolves like"
- Involves <u>Dispersion</u>, <u>Polar and Hydrogen bonding forces</u>
- Minimize distance between solute and solvent
 - Radius of soil interaction sphere (R_a)

$$R_a = \sqrt{4(D_{solv} - D_{solute})^2 + (P_{solv} - P_{solute})^2 + (H_{solv} - H_{solute})^2}$$

Courtesy Prof. Darren Williams. Sam Houston State University

Hansen parameters: Absolute numbers & balance influence solvency

Compound	Non-polar (dispersive)	Polar	Hydrogen bonding
Perchloroethylene	19.0	6.5	2.9
n-propyl bromide	16.0	6.5	4.7
HFC 43-10mee (Vertrel™)	12.9	4.5	5.3
HFE 7100 (Novec™)	13.7	2.3	1.3
Trans-1233zd (Solstice TM)	15.5	4.5	2.2
Water	8.6	13.4	25.8
Isopropyl alcohol	15.8	6.1	16.4
Acetone	15.5	10.5	7.0

Hansen solubility parameters – like paint chips

BFK Solutions 3.7C

Wetting Index & why it is important

- Penetration/wetting increases with low viscosity, low surface tension
- Penetration increases with high density (more momentum)
- Wetting index = density x 1000/surface tension x viscosity
 - Teaching tool developed by W. Kenyon
- Why might a high wetting index be desirable?
 - Better penetration close-spaced components
 - Better "creeping" under thin films
 - More effective removal of particles
 - More efficient extraction

Cleaning Agents	Density g/cm ³ (25 °C)	Surface Tension Dynes/cm (25 °C)	Viscosity Centi-poise (25 °C)	Wetting Index
HFC-43-10	1.58	14.1	0.67	167
HFE 7200 (HFE-569sf2)	1.43	13.6	0.61	172
Trans-1233zd	1.3	13.3	0.489	200
Acetone	0.79 (20 °C)	23.3 (20 °C)	0.36 (20 °C)	94
Isopropyl alcohol	0.78	21.8 (15 °C)	2.4 (20 °C)	15
d-limonene	0.84	25	1.28	26
H20	1.00	72.8	1.00	14
Saponifier solution, 6% ethanolamine-based saponifier	1.00	29.7	1.08	31

Properties of water

- Solvency
 - Good for polar substances, including salts
 - Poor for non-polar substances (e.g. oils)
- High surface tension
 - Low wettability

Aqueous cleaning agents contain chemical additives Compensate for like dissolves like

- Wetting
- Solubilization
- Saponification (base)
- Emulsification
- Sequestration
- Micelle formation (surfactant)

Why be concerned about additives?

- Wide variety of aqueous cleaners
- Changing the aqueous cleaner can affect
 - Cleaning efficacy
 - Residue
- Wide range of rinsability
 - Risks from un-rinsed residues

Aqueous formulations are complex

- Choosing an aqueous formulator is like finding a good chef
 - Many ingredients to choose from
 - Many different "styles"
- You may not need to know the exact recipe, but get to know the chef
 - Do not get all the info and nuances from the SDS

Example: just a small change in the cleaning agent

- Manufacturer of commercial & military reflectors
 - Coating in vacuum chamber
- Purchased "household" cleaning chemistry at Costco
- We called the formulators any changes?
 - Yup!
 - 2013 reformulation to meet CARB VOC restrictions
 - Affects sales of cleaning agents into California
- New product "neat" is 1:7 dilution of old product
- New product is oil splitting
 - Original held oils in suspension
- Asked the formulators: How do we know we have the new product?

Check the bottles!

This one has a little star.

- New product tiny star next to UPC code
- Covered over by store stickers
- Informing the user was left to the distributors

Next steps after the star

- "Improved" reformulated product unsuitable
- Tested alternative products
- Suggestions
 - Use cleaning agents designed for manufacturing
 - Keep an eye out for changes

Example: Surface finish, funerary Hardware – it's the water!

- Client processes included plating, vacuum deposition
- Problem: purple & brown coffin corners

Cleaning agent supplier told client to use tap water for rinse

- Problem: Quality and properties depend on source, season
 - Reservoirs (minerals, gases, organics)
 - Wells, aquifiers (minerals)
 - Rain (dissolved gases)
 - May contain additives, e.g. fluorides
 - If filtered, what do filters remove? Particles?, organics?
- Tap water is for drinking, not critical cleaning

Example: Particles in a vacuum – medical detector

- Symptom: Medical test detector imploded during use
 - Operating under reduced pressure
- Problem: structure complexity
- Cleaning during assembly difficult
 - Particulate contamination judged responsible for malfunction
 - Detection: visual (in-situ & extracted)
- Approach: instituted sequential ultrasonic cleaning steps
 - several aqueous & solvent products
- Problem resolved
- Better approach: design the product so it can be built

Overview: Cleaning, Adhesion, and Productivity

- Why clean before coating
- How cleaning works
- Cleaning, extraction, separation, detection
- Strategic cleaning

A "who-dun-it"

- Adapted from the Product Quality Cleaning Workshop (PQCW)
 - Presented with Dr. Darren Williams
 - Sam Houston State University (SHSU), 2018
 - Inspired by SHSU College of Criminal Justice

Cleaning, Extraction, Chromatographic Separation, Detection

- Related activities
- Have distinct purposes
- Understanding the differences important in
 - Developing processes
 - Evaluating standards, guidance documents
 - Working with laboratories
 - Validating/verifying cleaning processes
 - Process control
 - What does the process look like when it's correct
 - What do problems look like?

Why so many steps? Extraction, Chromatographic Separation, Detection

- Identify the contaminant
 - Carbon: 4 covalent bonds
- The are a boatload of organic compounds
 - At least 9 10 million identified
- Which organic compound is the culprit?
- Simplify!
 - Make it easy for the lab folks

Summary: Extraction, Chromatographic Separation, Detection

- Goal: Detect
 - What are the problem contaminants?
 - To do that we have to simplify
- Extract
 - Concentrate low levels of contaminants
 - Ferret out contaminants lurking in tight spaces
 - They can "creep" out in a vacuum
- Separate
 - Simplify the problem

This is what your analyst thinks when you send a sample and say: "find the suspect contaminant in this crowd (the fugitive could be hiding)"

BFK Solutions 5.50

Cleaning (in contrast with extraction)

- Disperse the crowd
- Remove soil from the surface, keep it away from the surface
- Not concerned about destroying the soil
- Don't want to change the surface or damage the product
- Extraction has commonalities with cleaning

Extraction (in contrast with cleaning)

- Capture the crowd
- Remove soil from surface
 - Involves solvency, wettability
 - May need more than one solvent for mixed soils
- Recover soil for analysis, identification
 - Often, concentrate the soil
- May not want to change or destroy the soil
 - Forensic analysis
- May not care about damaging the surface
 - Unless what you extract from the product interferes with identification
 - Unless this adds to the suspects in the crowd

Chromatography

- We've extracted the contaminants
 - We've extracted the people from the concert
 - They're all at the mall
- Next step: chromatography
 - Separate the people in the crowd
 - At least divide them into smaller, recognizable groups
 - Separate the contaminants

Separation by chromatography

- GC
 - Gas chromatography
- RGA
 - Residual gas analysis
- HPLC
 - High pressure (or high performance) liquid chromatography
 - Or high priced
 - Ion chromatography
 - A type of liquid chromatography
- Sometimes combined with other techniques
 - GC/MS
 - Gas chromatography/ mass spectroscopy

Contemporary gas chromatography – not visually informative

Chromatographic Separation

- Early chromatography separated chemicals in leaves
 - "Chrome" in chromatography referred to color of separated components
 - Currently "chrome" implies identify by separation
- Preparative chromatography
 - "clean" or purify a chemical
- Analytical chromatography
 - Clean a mixture so you can detect contaminants more clearly

Column chromatography

From: Roberts and Caserio, "Basic Principles of Organic Chemistry," W.A.Benjamin, 1964

- Introduce mixture to column
- Stationary phase (sorbent)
- Mobile phase
- Mobile phase passes through the stationary phase
- Result: separate mixture into simpler components
 - Ideally, single molecular species

Mobile phase: separate suspects into groups by attracting them away from the stationary phase

Announce: free ipods! Announce: New Harleys!

Detection: "See" the people (or groups of people) in the crowd

- Identify the contaminant of interest
- There are different kinds of detectors
 - Specificity: specific molecule, category of "dirt"
 - Sensitivity: how much dirt
- It's easier to detect purified "dirt"
 - Especially if the dirt is organic
- Even with an extract, you may have to separate parts of that extract
 - Or, can be like trying to identify objects through dense fog
 - Reduces the "fog" so the detector works more reliably

Detection: Profiling

The usual suspects are situational (aerospace, medical, electronic, floor products, has different suspects): even for a given method, use a lab with the correct computer "library"

BFK Solutions LLC

Sometimes, you can go from surface or extract to detector (not always!)

Overview: Cleaning, Adhesion, and Productivity

- Why clean before coating
- How cleaning works
- Cleaning, extraction, separation, detection
- Strategic cleaning

Options – avoid cleaning

- Don't clean
 - Is cleaning necessary?
- Only work with clean parts
 - Manage supply chain
 - Use disposables
- Keep the part or component clean
 - Before cleaning
 - During cleaning
 - After cleaning
- Redesign the product or component
- Change the soil

Example: Is the fabricator the weak link?

- Poor adhesion of DLC (diamond-like-coating)
- We reviewed supply chain activities
- Requested details about metalworking fluids
- Response: "Sometimes black grease, sometimes yellow grease, sometimes white grease"
 - No SDS provided
- Strongly suspect supplier used grease from dim-sum restaurant

Don't clean if you don't have to but you probably have to

Example: Flexible, "cell" cleaning versus central system

- Client builds vacuum coating systems & coats product
 - Plasma cleaning in coating chamber
- Also cleans prior to chamber cleaning/deposition
 - Vapor degreasing
 - Aqueous cleaning
 - Large, complex central system does it all
- Product line has evolved
- Looking at options
 - Modify central system versus smaller, specialized system
 - Modify fixtures to fit standard process baths

Avoid angst in vacuum applications

- Inappropriate cleaning process
- Change of formulation
 - Soils (e.g. machining fluids)
 - Cleaning agents ("new and improved")
- Weeping from holes, crevices, welds, etc.
- Porous material--outgassing
- Reliance on plasma to clean

Example: Particles in a medical imaging detector

- Detector made "pinging" noises
 - Associated with particles in a vacuum
- Coped with problem with extensive "break-in" process
 - Operate system under vacuum, at the factory
 - Listened for "pinging" noises
 - Released device after pinging stopped
- Solvent cleaning would have resolved the problem reliably
 - But they didn't use solvent cleaning
 - Why not?

Safety Office derailed critical cleaning processes

- Client had unused degreaser for HCFC 225
 - Unopened drum of HCFC 225
 - It's no longer produced, but the principle holds
- Barb: Why haven't you set up the process?
 - Answer: the Safety Officer won't let us
- Barb: Why?
 - Answer: Safety won't say
- Barb: Can we talk to safety? They can't fire us!
 - Answer: NO! We're afraid of him
- Bottom line: The process was not implemented for 5 years!

Periodic Table of Safe Elements

TANSTAAFL ("There ain't no such thing as a free lunch") Robert Heinlein, "The Moon is a Harsh Mistress"

- Better solvency desired
 - If it dissolves the soil, it MAY damage the product
 - Everyone wants a universal solvent
 - How would you store it?
- Safety, low environmental impact desired
 - If a cleaning agent dissolves the soil
 - it can impact you
 - Our products depend on organic chemicals (metalworking fluids)
 - We're made of organic chemicals
 - It can impact the environment

Questions?

- Barbara "The Cleaning Lady"
 - <u>barbara@bfksolutions.com</u>
 - Office 310-459-3614
 - Mobile 310-344-2061
- Ed "The Rocket Scientist
 - ed@bfksolutions.com
 - Office 310-459-3614
 - Mobile 310-614-7111

