The Search for Habitable Planets via the Solar Gravity Lens

Shaping the Future - A "Big Idea" for Space Exploration and Technology Development

Credit: ESA, Hubble & NASA Wikimedia

Exploit Einstein's Rings to Explore Distant Solar Systems

Solar Gravity Lens (SGL) is Being funded by NASA

DIRECT MULTIPIXEL IMAGING AND SPECTROSCOPY OF AN EXOPLANET WITH A SOLAR GRAVITY LENS MISSION

We have just completed the mid-term review NASA Innovative Advanced Concepts (NIAC) phase II Effort. "This is three NIAC projects worth of work, very impressive, mission design fantastic"

Direct Multipixel Imaging and Spectroscopy of an Exoplanet with a Solar Gravity Lens Focus (SGLF) Mission

An imaging mission to SGLF appears to be feasible, but needs further study

Concept

- SGLF provides a major gain (~10¹¹ at 1um), resolution of 10⁻⁹ arcsec in a narrow FOV;
- A 1-m telescope at ~750AU has a collecting area equivalent ~80 km aperture in space;
- A mission to the SGLF could image Earth 2.0 up to 30pc away with resolution to ~10km to see surface features;
- A small s/c with electric propulsion (or solar sails) can reach the SGLF in <35-40 yrs.

Benefits

- A breakthrough mission concept to resolve a habitable exoplanet at modest cost/time;
- Could find seasonal changes, oceans, continents, life signatures on an exo-Earth;
- Small-sat & fast exit from the solar system;
- Electric propulsion for raster-scanning the image using tethered s/c (or cluster);
- SLGF is valuable for other astrophysics and cosmology targets.

Proposed Study and Approach

- Define baseline design, sub-syst components;
- Define mission science goals & requirements;
- Develop system and subsystem requirements;
- Study mission architecture and con-ops;
- Assessment of feasibility (cluster) small-sats;
- Identify technology development needs;
- Study instruments & systems: power, comm, pointing, s/c, autonomy, coronagraph, nav, propulsion, raster scan in the image plane, etc.

Earth with resolution of (1000×1000) pixels.

The Power of 10⁴ – SGL Shrinks the Exo-Solar System by the Ratio of Star to Focal Point (FP) Distances

This distance compression means that a mission can be designed to survey an entire exo-solar system

FP is 4 light days (0.01 LY) Distant

Henry.Helvajian@aero.org

Where We Want to Go

Possible Location of Candidate Stars

What we might want to look at

Why investigate this mission?

- It is challenging and delivers a tool to future generations that could possibly answer the age-old question, "are we alone".
- It explores the development of satellite architectures that are
 - "self-reliant",
 - adaptable,
 - and long lived.
- Attributes that will be expected in future space systems

The first problem is exiting the solar system at >25 AU/year with extreme precision

VANES PROVIDE MULTIFUNCTIONAL CABILITIES FOR COMMUNICATION AND POWER GENERATION

This drives the weight of each s/c to < 10 kg.

SGL String of Pearls Architecture

Missions Can be Concurrently Flown to One or Several ExoSolar Systems

- Architecture is ~10 "pearls" each composed of 10-20 small "sailcraft" (payload + solar sail) launched by cost-effective shared or dedicated launches.
- The pearls "learn as the fly", to optimize science return.
 - Designs based on concurrent developments in spacecraft miniaturization, AI flight management, swarm CONOPS, and long-term reliability.
 - Successive pearls benefit from technology advancements to improve cost-effectiveness.

String of Pearls Architecture Overview

- Navigation uses existing and planned resources
 - DSN support during flight to solar perihelion and then outward to \sim 200AU.
 - From 200 AU to 900 AU, optical imaging –parallax using planets and occultation astrometry.
- Multi-vane solar sails control flight trajectories to perihelion and to self-assembly point.
 - E-propulsion used for midcourse corrections and flight along the SGL
- Flying many s/c on the mission ensures reliability and science return.

Spread the risk, spread the cost, minimize launch costs to maximize science return.

Propulsion Uses Solar Sails and e-Propulsion

Solar Sail Phases of the Flight

- Group each swarm of s/c into a "pearl" having interactive links and nodes.
- Spiral down to the perihelion while setting the orbital inclination.
- Accelerate at perihelion to ~160 km/sec for escape velocity of 20 AU/year.
- Adjust trajectory from hyperbolic to linear to align with SGL with precise aim at SGL.
- Use DSN and solar sails to minimize residual trajectory error.

E-Propulsion Phases of the Flight

• Multiple sailcraft, drop sails and re-assemble to form the mission capable spacecraft. Transition to e-propulsion to acquire and fly along the SGL

Solar sail propulsion does large delta v in our solar system, then there is a transition to e-propulsion for small delta v for the cruise and SGL mission

Each spacecraft passes perihelion to achieve >100 km/sec escape velocity

Solar sail propulsion accelerates the s/c without need for propulsive fuel

Navigation Phases Timeline

Navigation from Injection Point to SFL Acquisition

- From self-assembly orbit outward toward the SFL, precise tracking and monitoring will continue on a weekly basis to maintain the low position uncertainty limits.
- Autonomous navigation will be employed for the pearl cluster of satellites
 - Navigation status sent back with health and safety report schedules.
 - EP system is available for small maneuver adjustments if needed
- SFL acquisition is NOT similar to a New Horizon's Pluto/Charon approach
 - We won't be able see the SFL upon approach and will have to detect it when we are within exo-star SFL.
 - Use the exo-star SGL line (which will be orders of magnitude brighter) as guide.
- Once SFL acquisition is confirmed, a hand over to intra-cluster ranging relative to the exo-star focal line will be used to determine relative positioning of spacecraft (establish a local coordinate system based on the exo-star SGL focal line.

Henry.Helvajian@aero.org

Focal Region CONOPS

Science Operations and CONOPS

- An acquisition strategy that looks for the thin and dim exo-planet focal line (FL) is difficult, but a strategy that acquires the exo-star's FL first, and then moves to the planet's FL is much easier.
- Electric Propulsion (EP) will be required to maintain the path along the exo-star line as our Sun wobbles and also to maneuver to other planet FLs.
- The science environment between ~500 1000 AU expected to be benign with no significant perturbations to flight in terms of satellite performance.
- Strategies for moving from Star FL to Planet FL are illustrated in the right-hand figure below
 - Factor in the geometry of the planet's orbital plane with respect to the s/c line of sight

Solar Wobble Geometry over 76 years

Star-Planet FL Geometries Planet's Orbit Inclined 45° Vertically

KISS Symposium Briefing, 2018

ΔV Estimates for Focal Line Maneuvering

- Using a rectilinear model to estimate the delta-v as a first order approximation
 - Not accounting for station keeping due to Solar wobble
- Assuming the following EP engine:
 - Electrospray thruster: Isp (s)/ Thrust (mN) = 1200/0.1
- Model assumptions:
 - Constant gravity from Sun at 550 AU
 - Constant thrust from engine at 0.1 mN
 - Started at zero initial velocity
 - Burn in direction against Sun for a time, then immediately turn around and burn in the opposite direction such that vehicle is at zero velocity again at desired distance

Henry.Helvajian@aero.org

Technology Hardware and Software

Timing & Synchronization with Earth Clocks

How to maintain synchronization of on-board clocks given length of SGL mission

Microsemi Spec sheet: 900-00744-007. A. 4/19

- <120 mW, 35 g, < 17cm³
- Rad Tolerant 20krad,
- SEL, SEU tested to 64 MeV*cm²/mg (LET_{th} for Cosmic Ray 10-100 MeV*cm²/mg)

Design to maintain on-board clocks to < 1 ppm for duration of mission

	Current TRL	Approach	Synchronization period	Improvement in 10 years (aggressive)	Key technology barrier
Baseline	7-8	10 MHz CSAC (Microsemi) on s/c, Laser in Earth orbit. (100W, 10 MHz, 1 micron wavelength, 5 m output beam telescope	CSAC clock every 4 months (Allan Deviation ~ 1E-11 @ 1000s),	100X, so 33 years synchronization period (10MHz clock)	Controlling thermal drift
Eventual	2-3	Optical frequency comb on s/c	~ 1300 years for 10 MHz clock, 32 years for 500 MHz clock (Allan Deviation 2E-15, Y. Hisai et al. Optics Exp. 27(5) 2019,pg 6404.)	10X, so 53 years, for (3 GHz clock).	Support equipment very large (tabletop)

NIST physicists Scott Diddams (left) and Scott Papp with a prototype atomic clock based on a chip-scale frequency comb. Diddams is holding the silicon chip, which fits into the clock apparatus on the table.

Length of Mission and Sensor Contamination

Self-produced outgassing contaminating sensors and reflectors during the SGL journey

Parameter	Units	Intra Pearl (UHF)	Intra Pearl (Ka-band)	Intra Pearl (V-b	band)	Intra Pearl (V-band)	Intra Pearl (V-band)		
Data Rate	kbps	0.1	10	1000		10000	100000		
Frequency	MHz	401	28000	80000		80000	80000		
Distance	km	50000	50000	20000		6000	2000		
Transmit Station Parameters									
Antenna Diameter	m		0.20	0.20		0.20	0.20		
Antenna efficiency	%		65%	65%		65%	65%		
Wave length			Data Data /		F ue		0.004		
Antenna Gain	Intra-P	eari	Data Rate (vibps)	Fre	quency (MHz	42.61		
Transmit Power	Distanc	ce (km)	~ 3dB link n	nargin	(V-	Band)	1		
Line Loss	Bistant			1015		banaj	-1		
Transmit EIRP		2000	100			8000	41.61		
Propagation Parameters		2000	100			0000			
Free Space Loss		6000	10			8000	-196.5		
Atmospheric Loss		0000	10			0000	0		
Polarization Loss		20000				0000	-0.4		
Tx Pointing Loss		20000	1			8000	0		
Isotrapic Signal Level at Rx Statio	n dB	-1//.88	-183.27	-1/5.31		-164.85	-155.31		
Receiving Station Parameters									
Antenna Diameter	m		0.20	0.20		0.20	0.20		
Antenna efficiency	%		65%	65%		65%	65%		
Antenna Gain	dBi	2	33.5	42.6		42.6	42.6		
System Noise Temperature	К	140	140	140		140	140		
Noise Figure	dB	3	4	5		5	5		
Receiver Loss	dB	-1	UHF,	-1		-1	-1		
Receiver G/T	dB/K	-20.4	S-band,	16.8		16.8	1 6 .8		
Rx Pointing Loss	dB	0	V-band	-3		-3	-1		
Boltzman constant				ne Chu	ster	Shôwn	<mark>-228</mark> .6		
Received C/No	50,000 km	max distance	52.57	67.09		77.55	<mark>87.0</mark> 9		
Carrier Parameters									
Modulation order						\sim	2		
Code Rate	SGL	SGL 🖌	SGL	SGL		SGL	SGL p.6		
Symbol Rate	sat	sat	sat	sat		sat 3	sat 333.3		
Noise Bandwidth	UD TTZ	23.0	43.0	55.2		69.2	79.2		
Received Es/No	dB	7.3	9.6	7.9		8.3	7.9		
Received Eb/No	dB	10.3	12.6	7.1		7.5	7.1		
Implementation Loss	dB	-2	-2	-2		-2	-2		
Received Eb/No	dB	8.3	10.6	5.1		5.5	5.1		
Required Eb/No at BER=10^-7	dB	8	8	2		2	2		
Margin Helvajian@aero.org	dB	0.3	2.6	3.1		3.5	3.1		

Crosslink COMM

- Assumptions into analysis
 - Establish a Local Area Network,
 - SGL spacecraft flying in formation,
 - Low gain or omni directional antenna on each of the SGL sat,
 - Low pointing accuracy required,
 - Frequency division among the cross links to avoid interference,
- Link budgets worked for Intra Pearl or Cluster
 - UHF, Ka, and V-band
 - Really should use V-band

Downlink COMM: Pearl-to-Pearl

200AU 200	au 200au	_		
Earth \rightarrow	Y ×	***	*••	• *

					20 AU		1		40 AU				100 AU				200 AU				500 AU			Parameter	Units	Pearl to Pearl (V-band)
					20710								200710				200710							Data Rate	kbps	0.1
	Cross-Link Para	meters	Variable	Value	Units	dB U	Jnits	Value	Units	dB	Units	Value	Units	dB	Units	Value	Units	dB	Units	Value	Units	dB	Unit	Frequency	MHz	80000
																								Distance	km	2992000000
1	Transmission Rate		RT	4000.0	bps	36.0	dB	1000.0	bps	30.0	dB	160.0	bps	22.0	dB	40.0	bps	16.0	dB	6.3	bps	8.0	dB	Transmit Station Parameters		
1	Code Rate		r	0.5				0.5				0.5				0.5				0.5				Antenna Diameter	m	4.00
1	Information Rate		R ₁	8000.0	bps			2000.0	bps			320.0	br s			80.0	bps			12.5	bps			Antenna efficiency	%	65%
1	Modulation Format		М	4				4		-d	56	320.0 4		ΤV	ΗV	4				4				Wave length	m	0.004
e l	Transmit Wavelength		λ	1.55	μm			1.55	μm			1.55	μm			1.55	μm			1.55	μm			Antenna Gain	dBi	68.63
Transmitt	Tx Power				_	1.0	\			. /-			• \										Im	Transmit Power	W	10
l su	Tx WDM Loss	Sys	stem		Rang	e (A	U)		Lin	k (5	dB	marg	(in)				S	ugg	esti	ons			в	Line Loss	dB	-1
Lai	Tx Fiber Coupling Los																						в	Transmit EIRP	dBW	77.63
e_		E\A/ /1	EE	<u>ما</u>		20		00	l/hm	~					Co	ساط م	at 10	1 1 5	IV in	croa	o in	TV	в	Propagation Parameters	- D	220.0
i iii	Telescope Diameter	5W (1	.55 μι	n)		20		00	kbp	5					CO	uld g		J-T2		icreas	se m	IX		Free Space Loss	dB	-320.0
Satellite	Rx Telescope Efficien	laser,	40 cm												rat	<u>ه</u> .							в	Atmospheric Polarization	dB	
S	Tx Angular Beamwid	iusei,													Tat	с.								Tx Pointing Loss		
		Tx tele	escope	2.											Inc	reasi	ng la	aser	. bo/	ver 3	X. T	X	Bi	Isotrapic Signal Level at Rx Station	dB	-242.79
	To Deletie a Loss		-	-,													-		•		.,	-	B	Dessiving		242.15
	Transmit EIRP	2.5 m	Rx												tel	escop	be to) 1m	n dia	a .			m	Antennal Range	Link	
		diah																						Antenna		
		dish,																					_	Antenna 20 AU (4m	1006	os (2.1 dB
		-																						Antenna 20 AU (4m		/S (Z.1 UD
	Elevation Angle	-																					-		-	
el		use PF	PM ov	er	2	200		80	bps	(~ (5 hrs	s to			Th	e cab	0056	e sh	oulo	d be a	9		U	· ·	margi	
nnel	Slant Range (max)		PM ov	er	2	00			bps	•			c								-		U	System N antenna)	-	
Channel	Slant Range (max) Path Loss	use PF DPSK	PM ov	er	2	00			•	•		s to data	for	а		e cab quen					-	er	U	System N Noise Fig	margi	n)
Channel	Slant Range (max) Path Loss Total Atmospheric Lo		PM ov	er	2	00		tra	nsm	it S	&HS	data		а	sec	quen	ce of	f 3 s	5/c w	vith h	ighe		U	System N Noise Fig Receiver Loss	margi dB	n) -1 42.8 -3
Channel	Slant Range (max) Path Loss		PM ov	er	2	00		tra	nsm	it S	&HS			а	sec		ce of	f 3 s	5/c w	vith h	ighe		U B	System N Noise Fig Receiver Loss Receiver G/T Rx Pointing Loss	dB dB/K	n) -1 42.8 -3 -228.6
Channel	Slant Range (max) Path Loss Total Atmospheric Lo		PM ov	er	2	:00		tra	nsm	it S	&HS	data		а	sec po	quen wer l	ce of aser	f 3 s	5/c w	vith h	ighe		U B	System N antenna) Noise Fig antenna) Receiver Loss antenna) Receiver G/T antenna) Rx Pointing Loss antenna Boltzman constant antenna Received C/No antenna	dB dB/K dB	n) -1 42.8 -3
Channel	Slant Range (max) Path Loss Total Atmospheric Lo Net Path Loss		PM ov	er	2	:00		tra	nsm	it S	&HS	data		а	sec po	quen	ce of aser	f 3 s	5/c w	vith h	ighe		U B	System N antenna) Noise Fig antenna) Receiver Loss Receiver G/T Rx Pointing Loss Boltzman constant Received C/No Carrier Parameters	dB dB/K dB dBW/Hz/K	n) -1 42.8 -3 -228.6 25.63
Channel	Slant Range (max) Path Loss Total Atmospheric Lo Net Path Loss Rx Footprint Diamete		PM ov	er				tra 3U	nsm Cub	it So DeSa	&HS	data		а	sec po	quen wer l	ce of aser	f 3 s	5/c w	vith h	ighe		B	System N antenna) Noise Fig antenna) Receiver Loss Receiver G/T Rx Pointing Loss Boltzman constant Received C/No Carrier Parameters Modulation order Modulation order	dB dB/K dB dBW/Hz/K	n) -1 42.8 -3 -228.6 25.63 2
Channel	Slant Range (max) Path Loss Total Atmospheric Lo Net Path Loss Rx Footprint Diamete Rx Telescope Diamet		PM ov	er		00		tra 3U	nsm	it So DeSa	&HS	data		а	sec po	quen wer l	ce of aser	f 3 s	5/c w	vith h	ighe		U	System N antenna) Noise Fig antenna) Receiver Loss Receiver G/T Rx Pointing Loss Boltzman constant Received C/No Carrier Parameters Modulation order Code Rate	dB dB/K dB dBW/Hz/K dB-Hz	n) -1 42.8 -3 -228.6 25.63 25.63 2 0.2500
r Channel	Slant Range (max) Path Loss Total Atmospheric Lo Net Path Loss Rx Footprint Diamete Rx Telescope Diamet Rx Telescope Efficien			er		00	(n) - 1	tra 3U	nsm Cub	nit Sa DeSa Ds	&HS it ca	data			sec po 60	quen wer l	ce of aser).	f 3 s s (@	;/c w ⊉ 20	vith h	ighe 0 an	d	B	System N antenna) Noise Fig antenna) Receiver Loss Receiver G/T Rx Pointing Loss Boltzman constant Received C/No Carrier Parameters Modulation order Code Rate Symbol Rate Symbol Rate	dB dB/K dB dBW/Hz/K dB-Hz ksps	n) -1 42.8 -3 -228.6 25.63 25.63 2 0.2500 0.2
er	Slant Range (max) Path Loss Total Atmospheric Lo Net Path Loss Rx Footprint Diamete Rx Telescope Diamet Rx Telescope Efficien Rx Telescope Gain	DPSK	G _{Rx}	er		00	dBi	tra 3U	nsm Cub	it So DeSa DS 131.1	&HS It ca	data		131.1	sec po 60	quen wer l	ce of aser).	f 3 s s (@	с w 20 dBi	vith h	ighe 0 an	131.1	U B B dBi	System N antenna) Noise Fig antenna) Receiver Loss Receiver G/T Rx Pointing Loss Boltzman constant Received C/No Carrier Parameters Modulation order Code Rate Symbol Rate Noise Bandwidth	dB dB/K dB dBW/Hz/K dB-Hz ksps dB-Hz	n) -1 42.8 -3 -228.6 25.63 2 0.2500 0.2 23.0
er	Slant Range (max) Path Loss Total Atmospheric Lo Net Path Loss Rx Footprint Diameta Rx Telescope Diamet Rx Telescope Efficien Rx Telescope Gain Polarization Mismatch	DPSK	G _{Rx} L _{pol}		5	000 131.1 0.0	dB	tra 3U 12.	nsm Cub 5 br	it So beSa 05 131.1	&HS it ca dBi dB	data 2019	9)	131.1 0.0	sec po 600 dBi dB	queno wer l 0 AU)	ce of aser).	f 3 s s (@ 131.1 0.0	5/с w 0 20 dBi dB	vith h 0, 40	ighe 0 an	131.1 0.0	dB	System N antenna) Noise Fig antenna) Receiver Loss Receiver G/T Rx Pointing Loss Boltzman constant Received C/No Carrier Parameters Modulation order Code Rate Symbol Rate Noise Bandwidth Received Es/No Symbol Rate	dB dB/K dB dBW/Hz/K dB-Hz ksps dB-Hz dB	n) -1 42.8 -3 -228.6 25.63 2 0.2500 0.2 23.0 2.6
Receiver	Slant Range (max) Path Loss Total Atmospheric Lo Net Path Loss Rx Footprint Diameta Rx Telescope Diamet Rx Telescope Gain Polarization Mismatch Receiver Pointing Loss	DPSK	G _{Rx}	er 2		000 131.1 0.0 0.7	dB dB	tra 3U 12.	nsm Cub	it So DeSa DS 131.1	&HS It ca	data		131.1 0.0 0.7	Sec po 600 dBi dB dB	queno wer l 0 AU)	ce of aser).	131.1 0.0 0.7	dBi dB dB	vith h	ighe 0 an	131.1 0.0 0.7	dB dB	System N antenna) Noise Fig antenna) Receiver Loss Receiver G/T Rx Pointing Loss Boltzman constant Boltzman constant Received C/No Carrier Parameters Modulation order Code Rate Symbol Rate Noise Bandwidth Received Es/No Received Eb/No Received Eb/No	dB dB/K dB dBW/Hz/K dB-Hz dB-Hz dB-Hz dB dB	n) -1 42.8 -3 -228.6 25.63 25.63 2 0.2500 0.2 23.0 2.6 5.6
Receiver	Slant Range (max) Path Loss Total Atmospheric Lo Net Path Loss Rx Footprint Diameta Rx Telescope Diamet Rx Telescope Efficien Rx Telescope Gain Polarization Mismatch	DPSK	G _{Rx} L _{pol}		5	000 131.1 0.0 0.7	dB	tra 3U 12.	nsm Cub 5 br	it So beSa 05 131.1	&HS it ca dBi dB	data 2019	9)	131.1 0.0	sec po 600 dBi dB	queno wer l 0 AU)	ce of aser).	f 3 s s (@ 131.1 0.0	5/с w 0 20 dBi dB	vith h 0, 40	ighe 0 an	131.1 0.0	dB	System N antenna) Noise Fig antenna) Receiver Loss Receiver G/T Rx Pointing Loss Boltzman constant Boltzman constant Received C/No Carrier Parameters Modulation order Code Rate Symbol Rate Noise Bandwidth Received Es/No Received Eb/No Implementation Loss	dB dB/K dB dBW/Hz/K dB-Hz dB-Hz dB dB-Hz dB dB dB dB	n) -1 42.8 -3 -228.6 25.63 25.63 2 0.2500 0.2 23.0 2.6 5.6 -2
Receiver	Slant Range (max) Path Loss Total Atmospheric Lo Net Path Loss Rx Footprint Diameta Rx Telescope Diamet Rx Telescope Gain Polarization Mismatch Receiver Pointing Loss	DPSK	G _{Rx} L _{pol} L _{Rxpoint}		5	000 131.1 0.0 0.7 0.5	dB dB	tra 3U 12.	nsm Cub 5 br	it So DeSa DS 131.1 0.0 0.7	&HS It ca	data 2019	9)	131.1 0.0 0.7	Sec po 600 dBi dB dB	queno wer l 0 AU)	ce of aser).	131.1 0.0 0.7	dBi dB dB	vith h 0, 40	ighe 0 an	131.1 0.0 0.7	dB dB	System N antenna) Noise Fig antenna) Receiver Loss Receiver G/T Rx Pointing Loss Boltzman constant Boltzman constant Received C/No Carrier Parameters Modulation order Code Rate Symbol Rate Noise Bandwidth Received Es/No Received Eb/No Implementation Loss Received Eb/No Received Eb/No	Margi dB dB/K dB dBW/Hz/K dB-Hz dB-Hz dB dB dB dB dB dB dB	n) -1 42.8 -3 -228.6 25.63 25.63 2 0.2500 0.2 23.0 2.6 5.6 -2 3.6
er	Slant Range (max) Path Loss Total Atmospheric Lo Net Path Loss Rx Footprint Diamet Rx Telescope Diamet Rx Telescope Gain Polarization Mismatch Receiver Pointing Loss Rx Fiber Coupling Loss	LOSS	G _{Rx} Lpol LRxfiber	0.2	arcsec	000 131.1 0.0 0.7 0.5 0.0	dB dB dB dB	tra 3U 12.	nsm Cub 5 br	it So DeSa DS 131.1 0.0 0.7 0.5	&HS It ca dBi dB dB dB dB	0.2 0.2) arcsec	131.1 0.0 0.7 0.5 0.0	Sec po 600 dBi dB dB dB dB	quent wer l 0 AU)	ce of aser). arcsec	f 3 s s (@ 131.1 0.0 0.7 0.5	dBi dB dB dB	, 40 0, 40	ighe 0 an arcsec %	131.1 0.0 0.7 0.5	dB dB	System N antenna) Noise Fig antenna) Receiver Loss Receiver G/T Rx Pointing Loss Boltzman constant Boltzman constant Received C/No Carrier Parameters Modulation order Code Rate Symbol Rate Noise Bandwidth Received Es/No Received Eb/No Implementation Loss	dB dB/K dB dBW/Hz/K dB-Hz dB-Hz dB dB-Hz dB dB dB dB	n) -1 42.8 -3 -228.6 25.63 25.63 2 0.2500 0.2 23.0 2.6 5.6 -2

Henry.Helvajian@aero.org

Overview of current COMM architecture

Henry.Helvajian@aero.org

Laser Comm While "Staring at the Sun"

- NASA to install Deep space optical Comm
 - Data rates of 200 Gbs at 1 AU have been claimed
 - then at 500AU and 800AU 800 kbs and 300 kbs can be expected.
- For SGL, constraints of emission from sun limit S/N
 - Situation critical for receiving s/c sensor
 - For Comm to 550AU need ~100W laser in LEO
 - Or ~10W repeater" s/c at 200 AU distances.
- Advantages of formation flying a cluster of s/c and laser COMM.
 - Not every s/c needs laser downlink capability.

SGL spacecraft design

Current Space Craft Design

- Parse mission functions into functional *units* trying to reduce each unit to ~ 10 kg mass.
- Give each *unit* the capabilities of a 6U Cubesat (avionics, ACS, batteries, EP, ...), operates alone for limited time.
- Each unit can "take care of itself", self powered but also carries a critical function or capability for the SGL mission (e.g.; primary telescope mirror, RTG, extra batteries, coronagraph, optical COMM, ...)
- Fly each *unit* on a solar sail to high velocities.
- Deploy the *units* between Earth and Mars orbits.
- Conduct in-orbit self-assembly using 6U CubeSat propulsion and ACS •

Component	pMC-1	pMC-2	pMC-3	pMC-4	pMC-5	pMC-6	pMC-7
3U CubeSat Bus	x	x	x	x	x	x	x
Solar Sail	x	x	x	x	x	x	x
Primary Mirror	x						x
Optical Comm		x				x	
Coronagraph		x					
High Res Star Tracker		x				x	
Robotic Arm (boom) + Secondary Mirror			x		x		
Extra Battery			x		x		
RPS				x			
Larger RW (100 kg mass)				x			
Extra EP				x			

Intelligent Autonomy Drivers

- Months-long period of blackout, where comms link will be blocked by the sun
- Perihelion passage for the gravity assist, when the AI will need to manage GNC
- 4+ light day distance to the SGLF, where optimal operations will require intelligent autonomy
- Optimize power usage on smallsats, given limited power for extensive mission requirements

AI Algorithm Design

- Al Executive functionality with Intelligent Autonomous Agents (Al Subsystem concept)
- Deep Convolutional Neural Networks (CNNs) for pattern recognition
- Recurrent Neural Networks (RNNs) for Anomalous Signal Processing
- Reinforcement Learning to learn from new data then find and drive optimal solutions
- General Adversarial Network (GANs) and/or Hierarchical Temporal Memory (HTM) to find "imaginative" optimal solutions to unknown data coming available throughout the mission

USE Case understudy: Integrated Vehicle Health Management (IVHM) system

The Concept of Operations (CONOPS) in overview

MISSION TIME

The Keys to Mission Executability

N

Solar

System

- To make the SGL mission attractive we need to:
 - Drive down and spread non-recurring costs lots of players
 - Gain economies of scale to minimize recurring costs – lots of spacecraft
- Open architecture so everyone can "play" to spread costs
 - Small s/c (<10 kg)
 - Affordable methods for exit velocity
 - Lean ground-based TT&C
- Then we can build and fly many s/c
 - To a single exo solar system, or
 - To multiple exo solar systems

2

Come Join Us

https://aerospace.org/article/solar-gravity-lens-looks-exoplanets