Imagine going to a train station, buying a ticket estimated to cost $20, stepping into a “pod” that holds 10 or 20 people, and 30 minutes later, stepping out into San Francisco. Or Phoenix. Or Las Vegas. This was originally a dream of Elon Musk, who in 2013 wrote a paper on how such a “Hyperloop” system might work. Five years later, the dream appears to be coming to reality, as a number of companies have proposed routes around the world. The first commercial systems are expected in 2021.

Hyperloop is significantly faster than traditional rail, using pods in low-pressure tubes that could travel over 700 miles an hour. This is enabled by pumping much of the air out of the tubes it travels in, which greatly reduces wind resistance. The pods can either float on air that act like cushions at such high speeds, or use magnetic levitation. Because for the friction reduction that results from the partial vacuum, the system is much more energy-efficient than other modes of transportation.

For the last couple years, SCCAVS has been proud to support HyperXite, a group of sharp and innovative young people at UC Irvine that are developing a pod for the Hyperloop system. The student-led team—with the assistance of top university professors—is engaged in comprehensive design testing and construction of a half-scale Hyperloop pod. In addition to direct sponsorship, SCCAVS arranged for a short course on Vacuum Technology to be given to the HyperXite team.

(Continued on page 2)
LA to San Francisco in 1/2 Hour? (Continued from Page 1)

The hard work has paid off. Previously, HyperXite placed in the top 5 of all Hyperloop teams in the world for their overall design. In addition, HyperXite was one of six teams to make it to the open air Hyperloop Tube in the second SpaceX Hyperloop Competition and was the fastest and highest ranked American team.

HyperXite has been invited to take part in the SpaceX Hyperloop Competition III this summer. Last month, HyperXite announced that they have passed the final design phase. The team is currently in the manufacturing and testing phases. The latest pod design is faster and lighter than their previously designed pod, weighing 80% less, and allowing it to reach a maximum speed of 320 mph. The pod represents a considerable engineering feat, which includes an electric motor, a drive wheel, pressure vessel, cooling reservoir, a distributed control system, and a magnetic braking system. The newly designed structure lowers the center of gravity even further than previous versions, improving efficiency (see Figure 1).

(Continued on Page 5)
Highlights from TAE Technologies Talk and Tour

On Tuesday, March 6, 2018 the SCCAVS presented “Fusion: Not a Pipe Dream Anymore” at TAE Technologies in Foothill Ranch, CA. The event drew 50 people from all segments of the vacuum technology community. The talk was given by Dr. Alan Van Drie, Lead Scientist, heading the vacuum group at Tri Alpha Energy (TAE) Technologies. He is also an executive committee member on the AVS Vacuum Technology Division.

The talk delved into the unique vacuum challenges they have faced over the last 20 years since the company formed, such as how they evolved from using a small simple vacuum system to a large complex UHV system with specialized multi-million L/s pumping systems. The next system, named “Copernicus”, will require 300 Kilovolts to a Megavolt of power for beam fusion, and will achieve the goal of break-even with improvements to beam energies, temperatures, magnetic field levels, and pumping systems.

It was a true evening of discovery at the forefront of fusion research taking place in our very own SoCal backyard. As the world confronts what most scientists agree are the detrimental effects of fossil fuel consumption and greenhouse gas emissions, great strides are being made in carbon-free energy sectors of wind, solar and hydroelectric. However, as our planet’s power consumption is expected to double by 2050, we will need all kinds of clean generation technologies to meet the many facets of this dramatic increase in demand. TAE Technologies aims to meet that demand by commercializing fusion power within the next 20 years. They dubbed this clean, compact, affordable – and safe approach “Friendly Fusion”.

THANK YOU to our hosts at TAE Technologies and to Dr. Alan Van Drie. The following images (continued on page 6) are of our tour of Norman, TAE’s current machine named after their founder Dr. Norman Rostoker.
Short Course Requests for AVS 65

AVS 65 will be held from October 21-26, 2018 at the Long Beach Convention Center. The Southern California Chapter of the AVS (SCCAVS) will not be holding a separate Equipment Exhibition and Short Course Program and instead will have a role at the National show in choosing short courses and hosting our community members in the member center for a special hospitality event (details to follow).

We ask YOU, the Southern California Vacuum Technology community to suggest which short courses would interest you. This is the first time the local Chapter has had the opportunity to inform the National Program, and the full short course list is available at https://www.avs.org/Education-Outreach/Short-Courses/Short-Course-Catalog

Send your recommendations and feedback, including the following information, to chair@sccavs.org:

- Name:
- Company Name:
- Email:
- Course Suggestion 1:
- Course Suggestion 2:
- # Interested Registrants: (This is not a commitment)
Unlike in previous competitions, for the Hyperloop III competition the pods must be self-propelled. To achieve this they added a motor and a drive wheel to their design (see Figure 2). The wheel will be loaded onto the track inside the tube with a force of 670 pounds to increase traction. As this competition will not involve a coasting period required during previous competitions, air levitation will no longer be necessary.

If you are interested in more information on the HyperXite team, check them out at http://www.hyperxite.com.

Figure 2: Unlike in previous competitions, for the Hyperloop III competition the pods must be self-propelled. The propulsion system consists of a motor and a drive wheel. They no longer need air levitation as there will not be a coasting period.

Figure 3: The new pod utilizes eddy current braking by using passive magnetic braking system that hug onto SpaceX’s conductive i-beam rail.

NOT YOUR ORDINARY SCREW

• Vented Screws for Vacuum
• Plated Screws for Galling Prevention
• Coated Screws for Lubrication
• Cleaned Screws for Critical Environments
• Fastener Accessories
• Baked O-Rings for Reduced Outgassing

Call for a free consultation 408-782-1929
uccomponents.com
Chapter Activities

Highlights from TAE Technologies Talk & Tour (Continued from page 3)

Clockwise from top left: Group 1 in front of Norman, Dr. Alan Van Drie, Group 3 in front of Norman, Group 2 in front of Norman, SCCAVS Chair Corinne D’Ambrosio introducing AVS and our speaker (images courtesy of TAE and Jeff Lince)

Control Your Profit

Maximize your competitive edge with market-leading products, proven expertise and worldwide support from the technology leader in measurement and control.

THIN FILM CONTROLLERS AND MONITORS
QUARTZ CRYSTAL SENSORS | QUARTZ CRYSTALS

www.inficon.com
reachus@inficon.com
Thank you to our sponsors:

Manufacturer's Representative For:
AJA International www.ajaint.com
ATC Chillers www.app-therm.com
Atlas UHV www.atlasuhv.com
CTI & Polycold www.brooks.com
LACO www.lacotech.com
MKS www.mksinst.com

www.mbartech.com

Components Consumables Materials Systems

Chamber Experts
Build-to-Print or 3D Model
Aluminum or Stainless Steel
One-Off or Production Quantities
High or Ultra-High Vacuum
Single Wall or Water-Cooled
CMM and RGA Inspection
ISO 9001-2008 Certified
ASME U Stamp
BVPC Certified

Nor-Cal Products
by PFEIFFER VACUUM
In Southern California
DF Technology Inc.
Fred Van der Linde
818-424-0324

www.n-c.com

March/April 2018

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
</tbody>
</table>

We're on the web!

www.sccavs.org